Induced ferromagnetism in multilayered graphene in proximity with CoFe2O4
نویسندگان
چکیده
منابع مشابه
Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect.
We demonstrate the anomalous Hall effect (AHE) in single-layer graphene exchange coupled to an atomically flat yttrium iron garnet (YIG) ferromagnetic thin film. The anomalous Hall conductance has magnitude of ∼0.09(2e(2)/h) at low temperatures and is measurable up to ∼300 K. Our observations indicate not only proximity-induced ferromagnetism in graphene/YIG with a large exchange interaction, ...
متن کاملDivacancy-induced ferromagnetism in graphene nanoribbons
Zigzag graphene nanoribbons have spin-polarized edges, antiferromagnetically coupled in the ground state with total spin zero. Customarily, these ribbons are made ferromagnetic by producing an imbalance between the two sublattices. Here we show that zigzag ribbons can be ferromagnetic due to the presence of reconstructed divacancies near one edge. This effect takes place even though the divacan...
متن کاملInterface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene.
We show ferromagnetic properties of hydrogen-functionalized epitaxial graphene on SiC. Ferromagnetism in such a material is not directly evident as it is inherently composed of only nonmagnetic constituents. Our results nevertheless show strong ferromagnetism with a saturation of 0.9μ(B)/hexagon projected area, which cannot be explained by simple magnetic impurities. The ferromagnetism is uniqu...
متن کاملFerromagnetism in semihydrogenated graphene sheet.
Single layer of graphite (graphene) was predicted and later experimentally confirmed to undergo metal-semiconductor transition when fully hydrogenated (graphane). Using density functional theory we show that when half of the hydrogen in this graphane sheet is removed, the resulting semihydrogenated graphene (which we refer to as graphone) becomes a ferromagnetic semiconductor with a small indir...
متن کاملQuantum Hall ferromagnetism in graphene.
Graphene is a two-dimensional carbon material with a honeycomb lattice and Dirac-like low-energy excitations. When Zeeman and spin-orbit interactions are neglected, its Landau levels are fourfold degenerate, explaining the 4e2/h separation between quantized Hall conductivity values seen in recent experiments. In this Letter we derive a criterion for the occurrence of interaction-driven quantum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2018
ISSN: 2158-3226
DOI: 10.1063/1.5003035